跨考教育

跨考教育

当前位置: 跨考网 > 公共课 > 数学 > 复习指导 > 正文

2016考研数学中值定理:基础阶段掌握到何种程度?

来源: 跨考教育

2015-03-10 13:54:46

手机考研网

收藏本文

2016考研数学中值定理

  考研数学考查的一项基本能力是逻辑推理能力,其实就是证明问题的能力。那如何考查呢?基本上有如下几个出题的方向:等式的证明、不等式的证明以及中值定理的证明。下面,跨考教育数学教研室邵伟如老师就为大家介绍该如何掌握,掌握到何种程度才能为之后的复习打下坚实基础。

  提到中值定理大家第一反应是头疼,根本不知道在做什么,了解一些定理内容的同学做题的时候看各种辅导书上的辅助函数更是不知从何而来。很多同学最后都是决定,大不了这部分分数不要了。要知道,研究生考试一分之差就有几百人在你前边了,十几分不要了,那离自己心目中的学校就更远了,因此还是不能轻言放弃,而且就考研数学中值定理的难度来说不仅可以做出来而且可以拿到满分。

  下面梳理一下中值定理部分内容。首先理清定理之间的关系,本部分的定理包括:费马引理、罗尔中值定理、拉格朗日中值定理以及柯西中值定理。其中费马引理、罗尔中值定理、拉格朗日中值定理、柯西中值定理定理本身的证明是需要掌握的,真题考察过拉格朗日中值定理的证明。

  费马引理的内容叙述出来就是可导的极值点一定是驻点,证明主要依靠的是导数的定义以及极限的保号性;罗尔中值定理的内容叙述出来就是闭区间上连绵不断,开区间内光滑而且端值相等的一条曲线,一定可以在开区间内至少找到一点,该点处具有水平切线,定理的证明是依据费马引理;拉格朗日中值定理的内容叙述出来是闭区间上连绵不断,开区间内光滑的一条曲线一定可以在开区间内至少找到一点,该处切线平行于曲线两端点连线,定理的证明依据罗尔中值定理;柯西中值定理的证明可以使用拉格朗日中值定理也可以使用罗尔中值定理,定理中涉及到两个函数,几何意义与拉格朗日相同只不过看作是函数曲线的参数表达形式即可。

  那么在考研数学中,三大中值定理的地位如何呢?一般来说证明题罗尔定理考查较多,侧重点在如何构造辅助函数并寻找等值;应用最广的拉格朗日中值定理,这一定理的最大作用在于沟通了函数与导数,帮助我们建立二者的关系,还可以用于证明不等式;柯西定理则主要证明含有两个中值 的证明题。

  由以上分析可知,三大中值定理之间是一般与特殊的关系。基础阶段要求能够叙述出定理的内容与结论,可以证明定理,领会在证明定理的过程中使用的方法和思想,理解定理的几何意义。掌握到何种程度呢?大家可以参考同济版的《高等数学》教材,能解课后习题难度的试题即可。

  相关推荐:

2016考研交流群 341156227 2016考研政治交流群 201031149
2016考研数学备战群 99712172 2016翻硕考研MTI 415899196
2016年经济学考研交流 423289576 2016医学考研群 430154117
2016会计硕士考研群 424230080 2016法硕考研交流群 397618447
2016考研英语备战群 422376372 2016金融专硕考研 426157004

分享到:

相关推荐

跨考网| 研招网| 考研信息网| 关于我们| 加入我们| 联系我们 | 网站导航

跨考手机考研网:http://m.kuakao.com/ 考研从未如此简单

Copyright@2004-2014 www.kuakao.com All Right Reserived 京 ICP备11041699号-3

版权所有:北京尚学硕博教育咨询有限公司

 

公共课保分班

400-883-2220