跨考教育

跨考教育

当前位置: 跨考网 > 公共课 > 数学 > 考研数学真题 > 正文

2016考研数学考试分析之高频大题(三)

来源: 跨考教育

2015-12-27 19:30:14

手机考研网

收藏本文

刘纬宇——数学教研室

(书接上回)

若选择了极坐标系,那接下来干什么?要选择积分次序吗?不用选,肯定是先对r积分后对角度积分,另一种次序的积分几乎没出现过。再往后就是定限了。极坐标系下定限可以简单概括为:从原点出发画一条射线穿过积分区域,与积分区域的边界有两个交点,这两个交点的r坐标即为第一次积分的积分上下限(把交点的r坐标用角度表示)。接下来,让刚才画的这条射线绕着原点旋转,直到与积分区域的边界相切,这两条切线对应的角度即为第二次积分的积分上下限。

若选择了直角坐标系,那接下来要选择积分次序。又涉及到选择了,当然是一看积分区域,二看被积函数。看积分区域的原则是避免分类讨论,看被积函数的原则是让第一次积分简单。次序选完后,就进入到收官阶段——定限了。直角坐标系下定限可以简单概括为:先对谁积分就画一条平行于哪个坐标轴的直线,穿过积分区域,与积分区域的边界有两个交点。这两个交点就对应着第一次积分的积分上下限。接下来,让刚才画的这条直线平行移动,直到与积分区域的边界相切。这两条切线就对应着第二次积分的积分上下限。

五、幂级数求和、展开

处理此类问题可以从两方面把握:工具和思路。

工具包括一般函数f(x)的泰勒级数、常见函数的泰勒级数和逐项求导、积分定理。把这三部分内容理解到位是处理求和、展开问题的前提。

函数展开成幂级数有两种方法:直接法和间接法。绝大部分真题用的是间接法。所谓间接法,即记住常用函数的泰勒展开公式,然后看题目所给函数跟哪个公式像,则朝该公式的方向变形。变形的方式包括基本变形(如裂项)和求导、求积。后一种变形方式考频更高。此种变形也可以这么理解:题目所给函数直接套公式不行,也不能通过基本变形后套公式,那就考虑求导数或求积分,把运算后的函数套公式展开成幂级数,然后做逆运算还原。

幂级数求和实质是函数展开成幂级数的逆过程,类似考虑即可。

(未完待续)

分享到:

相关推荐

跨考网| 研招网| 考研信息网| 关于我们| 加入我们| 联系我们 | 网站导航

跨考手机考研网:http://m.kuakao.com/ 考研从未如此简单

Copyright@2004-2014 www.kuakao.com All Right Reserived 京 ICP备11041699号-3

版权所有:北京尚学硕博教育咨询有限公司

 

公共课保分班

400-883-2220