跨考教育

跨考教育

当前位置: 跨考网 > 公共课 > 数学 > 考研数学真题 > 正文

2016考研数学考试分析之高频大题(一)

来源: 跨考教育

2015-12-27 19:32:34

手机考研网

收藏本文

刘纬宇——数学教研室

2016全国硕士研究生入学考试刚刚落下帷幕。考试体现出来的规律对2017年的考生有借鉴意义。考研数学的考点较分散,所以提醒考生打牢基础,作全面的复习。在此基础上,那些真题中高频必考题型,考生须给予重视。下面跨考刘纬宇老师为考生揭开高数中那些高频必考大题的神秘面纱。

一、极限计算

整张试卷共23题,其中第15题几乎是极限计算大题的代名词。极限计算有8种武器,分别为:四则运算法则、等价无穷小替换、洛必达法则、幂指型函数的处理、单侧极限、夹逼定理、单调有界必有极限原理和泰勒公式。

考生在基础阶段要把前5种武器掌握好:内容是什么弄清楚,会应用。后3种武器较难把握,我们可以分阶段啃下这几个硬骨头。基础阶段弄清定理内容,会做基本题目。

对于夹逼定理,内容方面,考生要知晓它有数列和函数两种形式。每种形式条件是什么,结论是什么要理解。以数列形式为例,条件是一个数列夹在另两个数列之间(bn<= an<= cn, 只要n充分大时成立即可,因为考虑的是极限),且有n趋于无穷时,两边的数列收敛到相同的数,结论是夹在中间的数列极限存在且极限值也为相同的数。应用方面,要熟悉夹逼定理推出的一个结论:无穷小乘有界量等于无穷小。会用夹逼定理计算一种长得很有型的数列的极限——n项分母互不相同的分式的和的极限。

对于单调有界必有极限原理,内容不难理解。应用方面,可以处理另一种长得很有型的数列的极限问题——递推式数列的极限的存在性问题中的简单题;也可以到了强化阶段再全面处理这种题。

泰勒公式可以说是算极限的最强大的武器。万物对立统一,这么强大的武器理解和运用起来自然会有些难度。基础阶段,要理解泰勒公式有两种形式——带皮亚诺余项的公式和带拉格朗日余项的公式,前者用来算极限,后者用来证明。算极限,需要记忆常见函数的泰勒公式。

(未完待续)

分享到:

相关推荐

跨考网| 研招网| 考研信息网| 关于我们| 加入我们| 联系我们 | 网站导航

跨考手机考研网:http://m.kuakao.com/ 考研从未如此简单

Copyright@2004-2014 www.kuakao.com All Right Reserived 京 ICP备11041699号-3

版权所有:北京尚学硕博教育咨询有限公司

 

公共课保分班

400-883-2220