2022考研线性代数各部分重要知识点盘点!

最后更新时间:2021-01-14 17:39:07
辅导课程:暑期集训 在线咨询
复习紧张,焦头烂额?逆风轻袭,来跨考秋季集训营,帮你寻方法,定方案! 了解一下>>

  22的考研er也该抖抖精神开始复习数学,为以后打好基础。线性代数是2022考研数学复习的重要部分,建议考研数学基础不好的小伙伴早点开始复习,下面小编整理了2022考研线性代数各部分重要知识点,一起来看看吧。

  一、行列式与矩阵

  行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,可以像润滑油一般结合其它章节出题,因此必须熟练掌握。

  行列式的核心内容是求行列式––具体行列式的计算和抽象行列式的计算。其中具体行列式的计算又有低阶和高阶两种类型,主要方法是应用行列式的性质及按行(列)展开定理化为上下三角行列式求解而对于抽象行列式而言,考点不在如何求行列式,而在于结合后面章节内容的比较综合的题。

  矩阵部分出题很灵活,频繁出现的知识点包括矩阵各种运算律、矩阵相关的重要公式、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。

  二、向量与线性方程组

  向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。

  向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

  这部分的重要考点一是线性方程组所具有的两种形式––矩阵形式和向量形式二是线性方程组与向量以及其它章节的各种内在联系。

  (1)齐次线性方程组与向量线性相关、无关的联系

  齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立––印证了向量部分的一条性质“零向量可由任何向量线性表示”。

  齐次线性方程组一定有解又可以分为两种情况:①有唯一零解②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系––齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。

  (2)齐次线性方程组的解与秩和极大无关组的联系

  同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过 “秩&rarr线性相关、无关&rarr线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以经过r个线性无关的解向量(基础解系)线性表示。

  (3)非齐次线性方程组与线性表示的联系

  非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。

  三、特征值与特征向量

  相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容––既有行列式、矩阵又有线性方程组和线性相关性,“牵一发而动全身”。

  本章知识要点如下:

  1. 特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。

  2. 相似矩阵及其性质,需要区分矩阵的相似、等价与合同:

  3. 矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件一是n阶矩阵有n个线性无关的特征值二是任意r重特征根对应有r个线性无关的特征向量。

  4. 实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于以其特征值为对角元素的对角阵。

  四、二次型

  这部分所讲的内容从根本上讲是特征值和特征向量的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵,必存在正交矩阵 使其可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

  本章知识要点如下:

  1. 二次型及其矩阵表示。

  2. 用正交变换化二次型为标准型。

  3. 正负定二次型的判断与证明。

  (注:本文来自网络,如有侵权,请联系删除)

  2022考研倒计时很快就要迈入100天大关,跨考考研秋季集训营 针对公共课进行强化冲刺复习,专业课个性化定制复习方案,助力百日冲刺;2023考研的小伙伴即将迎来大三开学季,受疫情影响,部分院校开学收到了影响,但跨考考研畅学5.0版本全新升级,无论你在校在家都可以更自如的完成你的考研复习,跨考畅学集训营让老师带你一起剖析自我,科学择校,以目标为导向合理化制定复习方案!

点击右侧咨询或直接前往了解更多

2022考研大纲&报名季
2022考研大纲及报名 各专业院校排名情况 2022考研报名流程及注意事项
2022考研时间及注意事项 2022年考研大纲
从金融专硕报录比解读金专考研哪些院校最好考 考研难度分析及自身情况解读
2023考研先知 考研考试科目有哪些? 如何正确看待考研分数线?
不同院校相同专业如何选择更适合自己的 从就业说考研如何择专业?
手把手教你如何选专业? 高校研究生教育各学科门类排行榜

跨考考研课程

班型 定向班型 开班时间 高定班 标准班 课程介绍 咨询
秋季集训 冲刺班 9.10-12.20 168000 24800起 小班面授+专业课1对1+专业课定向辅导+协议加强课程(高定班)+专属规划答疑(高定班)+精细化答疑+复试资源(高定班)+复试课包(高定班)+复试指导(高定班)+复试班主任1v1服务(高定班)+复试面授密训(高定班)+复试1v1(高定班)
2023集训畅学 非定向(政英班/数政英班) 每月20日 22800起(协议班) 13800起 先行阶在线课程+基础阶在线课程+强化阶在线课程+真题阶在线课程+冲刺阶在线课程+专业课针对性一对一课程+班主任全程督学服务+全程规划体系+全程测试体系+全程精细化答疑+择校择专业能力定位体系+全年关键环节指导体系+初试加强课+初试专属服务+复试全科标准班服务

①凡本网注明“稿件来源:跨考网”的所有文字、图片和音视频稿件,版权均属北京尚学硕博教育咨询有限公司(含本网和跨考网)所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转帖或以其他任何方式复制、发表。已经本网协议授权的媒体、网站,在下载使用时必须注明“稿件来源,跨考网”,违者本网将依法追究法律责任。

②本网未注明“稿件来源:跨考网”的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着再通转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的“稿件来源”,并自负版权等法律责任。如擅自篡改为“稿件来源:跨考网”,本网将依法追究法律责任。

③如本网转载稿涉及版权等问题,请作者见稿后在两周内速来电与跨考网联系,电话:400-883-2220