2022考研数学线性代数的6个重要考点

最后更新时间:2021-06-09 16:22:13
辅导课程:暑期集训 在线咨询
一轮复习没章法?不确定暑期复习方案?来跨考考研暑期魔鬼集训营,帮你寻方法,定方案! 了解一下>>

  2022考研的考生们已经开始了第一轮复习备考计划,线性代数是2022考研数学复习的重要部分,建议考研数学基础不好的小伙伴早点开始复习,下面小编整理了2022年考研数学线性代数的6个重要考点,一起来看看吧。

  一、行列式部分,强化概念性质,熟练行列式的求法

  行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。

  另外范德蒙行列式也是需要掌握的行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。

  二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用

  经过历年分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调。

  此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。

  涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的

  秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。

  三、向量部分,理解相关无关概念,灵活进行判定

  向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢?

  首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

  四、线性方程组部分,判断解的个数,明确通解的求解思路线

  性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。为了使考生牢固掌握线性方程组的求解问题,博研堂专家对含参数的方程通解的求解思路进行了整理,希望对考研同学有所帮助。通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带入增广矩阵化简整理不为零则有唯一解直接求出即可。若为非齐次方程组,则按照对增广矩阵的讨论进行求解。

  五、矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵对角化的求解

  矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相关题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对称矩阵的问题。

  六、二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定理

  二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。另外二次型及其矩阵表示,二次型的秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会用配方法、正交变换化二次型为标准形掌握二次型正定性的判别方法等等。

  (注:本文来自网络,如有侵权,请联系删除)

  2022考研征程已过半,暑期开启,更是要把握有效时间进行复习,跨考考研暑期集训营 针对公共课进行整合递增性复习,专业课个性化定制复习方案,助力暑期复习;2022考研进度条已经行进至7月,你是否了解目标院校报考难度?是否依照难度差对复习进度进行调节?跨考半年集训营让老师带你一起剖析自我,科学择校,以目标为导向合理化制定复习方案!

点击右侧咨询或直接前往了解更多

2022考研暑期集训
2022考研形式分析 各专业院校排名情况 从历年会计专硕报录比说MPAcc考研难吗
2022考研时间及注意事项 全年复习方案制定
从金融专硕报录比解读金专考研哪些院校最好考 考研难度分析及自身情况解读
2022备考全面解读 考研考试科目有哪些? 如何正确看待考研分数线?
不同院校相同专业如何选择更适合自己的 从就业说考研如何择专业?
手把手教你如何选专业? 高校研究生教育各学科门类排行榜

跨考考研课程

班型 定向班型 开班时间 全科协议班 全科标准班 课程介绍 咨询
全年集训二期 定向-政英统考班 4.20-12.20 80800起 60800 公共课集训面授课程+专业课集训面授课程+专业课针对性一对一课程+高清公共课线上精英补课课程+KTS专业课课程+班主任全程督学服务+全程规划体系+全程测试体系+全程精细化答疑+择校择专业能力定位体系+全年关键环节指导体系+初试保过加强课+初试协议班专属服务+复试全科协议班服务
2021无忧畅学 定向-数政英+(经济学;金融专硕;国际商务硕士;计算机;通信;电气;机械) 每月20日 26800起 16800起 基础阶在线课程+强化阶在线课程+真题阶在线课程+冲刺阶在线课程+专业课针对性一对一课程+班主任全程督学服务+全程规划体系+全程测试体系+全程精细化答疑+择校择专业能力定位体系+全年关键环节指导体系+初试保过加强课+初试协议班专属服务+复试全科标准班服务

①凡本网注明“稿件来源:跨考网”的所有文字、图片和音视频稿件,版权均属北京尚学硕博教育咨询有限公司(含本网和跨考网)所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转帖或以其他任何方式复制、发表。已经本网协议授权的媒体、网站,在下载使用时必须注明“稿件来源,跨考网”,违者本网将依法追究法律责任。

②本网未注明“稿件来源:跨考网”的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着再通转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的“稿件来源”,并自负版权等法律责任。如擅自篡改为“稿件来源:跨考网”,本网将依法追究法律责任。

③如本网转载稿涉及版权等问题,请作者见稿后在两周内速来电与跨考网联系,电话:400-883-2220