跨考教育

跨考教育

当前位置: 跨考网 > 公共课 > 数学 > 考试大纲 > 正文

2014年考研数学二考试大纲(原文)

来源: 跨考教育

2014-05-19 11:54:02

手机考研网

收藏本文

  2014年硕士研究生入学统一考试数学考试大纲

  数学二

  考试科目:高等数学、线性代数

  考试形式和试卷结构

  一、试卷满分及考试时间

  试卷满分为150分,考试时间为180分钟.

  二、答题方式

  答题方式为闭卷、笔试.

  三、试卷内容结构

  高等教学 约78%

  线性代数 约22%

  四、试卷题型结构

  试卷题型结构为:

  单项选择题 8小题,每小题4分,共32分

  填空题 6小题,每小题4分,共24分

  解答题(包括证明题) 9小题,共94分

  高等数学

  一、函数、极限、连续

  考试内容

  函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立

  数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

  函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

  考试要求

  1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.

  2.了解函数的有界性、单调性、周期性和奇偶性.

  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

  4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

  5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.

  6.掌握极限的性质及四则运算法则.

  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

  8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

  10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

  二、一元函数微分学

  考试内容

  导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径

  考试要求

  1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

  3.了解高阶导数的概念,会求简单函数的高阶导数.

  4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.

  5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.

  6.掌握用洛必达法则求未定式极限的方法.

  7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.

  8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

  9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.

分享到:

相关推荐

跨考网| 研招网| 考研信息网| 关于我们| 加入我们| 联系我们 | 网站导航

跨考手机考研网:http://m.kuakao.com/ 考研从未如此简单

Copyright@2004-2014 www.kuakao.com All Right Reserived 京 ICP备11041699号-3

版权所有:北京尚学硕博教育咨询有限公司

 

公共课保分班

400-883-2220